|
In mathematics, Carleman's equation is a Fredholm integral equation of the first kind with a logarithmic kernel. Its solution was first given by Torsten Carleman in 1922. The equation is : The solution for ''b'' − ''a'' ≠ 4 is : where ''C'' is an arbitrary constant. For the special case ''f''(''t'') = 1 (in which case it is necessary to have ''b'' − ''a'' ≠ 4), useful in some applications, we get : ==References== * CARLEMAN, T. (1922) Uber die Abelsche Integralgleichung mit konstanten Integrationsgrenzen. Math. Z., 15, 111–120 * Gakhov, F. D., Boundary Value Problems (Russian ), Nauka, Moscow, 1977 * A.D. Polyanin and A.V. Manzhirov, ''Handbook of Integral Equations'', CRC Press, Boca Raton, 1998. ISBN 0-8493-2876-4 Category:Integral equations 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Carleman's equation」の詳細全文を読む スポンサード リンク
|